Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A membrane-associated thioredoxin required for plant growth moves from cell to cell, suggestive of a role in intercellular communication.

Identifieur interne : 000A64 ( Main/Exploration ); précédent : 000A63; suivant : 000A65

A membrane-associated thioredoxin required for plant growth moves from cell to cell, suggestive of a role in intercellular communication.

Auteurs : Ling Meng [États-Unis] ; Joshua H. Wong ; Lewis J. Feldman ; Peggy G. Lemaux ; Bob B. Buchanan

Source :

RBID : pubmed:20133584

Descripteurs français

English descriptors

Abstract

Thioredoxins (Trxs) are small ubiquitous regulatory disulfide proteins. Plants have an unusually complex complement of Trxs composed of six well-defined types (Trxs f, m, x, y, h, and o) that reside in different cell compartments and function in an array of processes. The extraplastidic h type consists of multiple members that in general have resisted isolation of a specific phenotype. In analyzing mutant lines in Arabidopsis thaliana, we identified a phenotype of dwarf plants with short roots and small yellowish leaves for AtTrx h9 (henceforth, Trx h9), a member of the Arabidopsis Trx h family. Trx h9 was found to be associated with the plasma membrane and to move from cell to cell. Controls conducted in conjunction with the localization of Trx h9 uncovered another h-type Trx in mitochondria (Trx h2) and a Trx in plastids earlier described as a cytosolic form in tomato. Analysis of Trx h9 revealed a 17-amino acid N-terminal extension in which the second Gly (Gly(2)) and fourth cysteine (Cys(4)) were highly conserved. Mutagenesis experiments demonstrated that Gly(2) was required for membrane binding, possibly via myristoylation. Both Gly(2) and Cys(4) were needed for movement, the latter seemingly for protein structure and palmitoylation. A three-dimensional model was consistent with these predictions as well as with earlier evidence showing that a poplar ortholog is reduced by a glutaredoxin rather than NADP-thioredoxin reductase. In demonstrating the membrane location and intercellular mobility of Trx h9, the present results extend the known boundaries of Trx and suggest a role in cell-to-cell communication.

DOI: 10.1073/pnas.0913759107
PubMed: 20133584
PubMed Central: PMC2840455


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A membrane-associated thioredoxin required for plant growth moves from cell to cell, suggestive of a role in intercellular communication.</title>
<author>
<name sortKey="Meng, Ling" sort="Meng, Ling" uniqKey="Meng L" first="Ling" last="Meng">Ling Meng</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wong, Joshua H" sort="Wong, Joshua H" uniqKey="Wong J" first="Joshua H" last="Wong">Joshua H. Wong</name>
</author>
<author>
<name sortKey="Feldman, Lewis J" sort="Feldman, Lewis J" uniqKey="Feldman L" first="Lewis J" last="Feldman">Lewis J. Feldman</name>
</author>
<author>
<name sortKey="Lemaux, Peggy G" sort="Lemaux, Peggy G" uniqKey="Lemaux P" first="Peggy G" last="Lemaux">Peggy G. Lemaux</name>
</author>
<author>
<name sortKey="Buchanan, Bob B" sort="Buchanan, Bob B" uniqKey="Buchanan B" first="Bob B" last="Buchanan">Bob B. Buchanan</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20133584</idno>
<idno type="pmid">20133584</idno>
<idno type="doi">10.1073/pnas.0913759107</idno>
<idno type="pmc">PMC2840455</idno>
<idno type="wicri:Area/Main/Corpus">000A33</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000A33</idno>
<idno type="wicri:Area/Main/Curation">000A33</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000A33</idno>
<idno type="wicri:Area/Main/Exploration">000A33</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A membrane-associated thioredoxin required for plant growth moves from cell to cell, suggestive of a role in intercellular communication.</title>
<author>
<name sortKey="Meng, Ling" sort="Meng, Ling" uniqKey="Meng L" first="Ling" last="Meng">Ling Meng</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wong, Joshua H" sort="Wong, Joshua H" uniqKey="Wong J" first="Joshua H" last="Wong">Joshua H. Wong</name>
</author>
<author>
<name sortKey="Feldman, Lewis J" sort="Feldman, Lewis J" uniqKey="Feldman L" first="Lewis J" last="Feldman">Lewis J. Feldman</name>
</author>
<author>
<name sortKey="Lemaux, Peggy G" sort="Lemaux, Peggy G" uniqKey="Lemaux P" first="Peggy G" last="Lemaux">Peggy G. Lemaux</name>
</author>
<author>
<name sortKey="Buchanan, Bob B" sort="Buchanan, Bob B" uniqKey="Buchanan B" first="Bob B" last="Buchanan">Bob B. Buchanan</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis (growth & development)</term>
<term>Arabidopsis Proteins (chemistry)</term>
<term>Arabidopsis Proteins (genetics)</term>
<term>Arabidopsis Proteins (physiology)</term>
<term>Cell Communication (MeSH)</term>
<term>Cell Membrane (metabolism)</term>
<term>Cysteine (genetics)</term>
<term>Glycine (genetics)</term>
<term>Mutation (MeSH)</term>
<term>Plastids (metabolism)</term>
<term>Protein Conformation (MeSH)</term>
<term>Thioredoxins (chemistry)</term>
<term>Thioredoxins (genetics)</term>
<term>Thioredoxins (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arabidopsis (croissance et développement)</term>
<term>Arabidopsis (génétique)</term>
<term>Communication cellulaire (MeSH)</term>
<term>Conformation des protéines (MeSH)</term>
<term>Cystéine (génétique)</term>
<term>Glycine (génétique)</term>
<term>Membrane cellulaire (métabolisme)</term>
<term>Mutation (MeSH)</term>
<term>Plastes (métabolisme)</term>
<term>Protéines d'Arabidopsis (composition chimique)</term>
<term>Protéines d'Arabidopsis (génétique)</term>
<term>Protéines d'Arabidopsis (physiologie)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Thiorédoxines (composition chimique)</term>
<term>Thiorédoxines (génétique)</term>
<term>Thiorédoxines (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Protéines d'Arabidopsis</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Arabidopsis</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Arabidopsis Proteins</term>
<term>Cysteine</term>
<term>Glycine</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Arabidopsis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Cystéine</term>
<term>Glycine</term>
<term>Protéines d'Arabidopsis</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Membrane</term>
<term>Plastids</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Membrane cellulaire</term>
<term>Plastes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Protéines d'Arabidopsis</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Cell Communication</term>
<term>Mutation</term>
<term>Protein Conformation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Communication cellulaire</term>
<term>Conformation des protéines</term>
<term>Mutation</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Thioredoxins (Trxs) are small ubiquitous regulatory disulfide proteins. Plants have an unusually complex complement of Trxs composed of six well-defined types (Trxs f, m, x, y, h, and o) that reside in different cell compartments and function in an array of processes. The extraplastidic h type consists of multiple members that in general have resisted isolation of a specific phenotype. In analyzing mutant lines in Arabidopsis thaliana, we identified a phenotype of dwarf plants with short roots and small yellowish leaves for AtTrx h9 (henceforth, Trx h9), a member of the Arabidopsis Trx h family. Trx h9 was found to be associated with the plasma membrane and to move from cell to cell. Controls conducted in conjunction with the localization of Trx h9 uncovered another h-type Trx in mitochondria (Trx h2) and a Trx in plastids earlier described as a cytosolic form in tomato. Analysis of Trx h9 revealed a 17-amino acid N-terminal extension in which the second Gly (Gly(2)) and fourth cysteine (Cys(4)) were highly conserved. Mutagenesis experiments demonstrated that Gly(2) was required for membrane binding, possibly via myristoylation. Both Gly(2) and Cys(4) were needed for movement, the latter seemingly for protein structure and palmitoylation. A three-dimensional model was consistent with these predictions as well as with earlier evidence showing that a poplar ortholog is reduced by a glutaredoxin rather than NADP-thioredoxin reductase. In demonstrating the membrane location and intercellular mobility of Trx h9, the present results extend the known boundaries of Trx and suggest a role in cell-to-cell communication.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20133584</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>04</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>107</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2010</Year>
<Month>Feb</Month>
<Day>23</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>A membrane-associated thioredoxin required for plant growth moves from cell to cell, suggestive of a role in intercellular communication.</ArticleTitle>
<Pagination>
<MedlinePgn>3900-5</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.0913759107</ELocationID>
<Abstract>
<AbstractText>Thioredoxins (Trxs) are small ubiquitous regulatory disulfide proteins. Plants have an unusually complex complement of Trxs composed of six well-defined types (Trxs f, m, x, y, h, and o) that reside in different cell compartments and function in an array of processes. The extraplastidic h type consists of multiple members that in general have resisted isolation of a specific phenotype. In analyzing mutant lines in Arabidopsis thaliana, we identified a phenotype of dwarf plants with short roots and small yellowish leaves for AtTrx h9 (henceforth, Trx h9), a member of the Arabidopsis Trx h family. Trx h9 was found to be associated with the plasma membrane and to move from cell to cell. Controls conducted in conjunction with the localization of Trx h9 uncovered another h-type Trx in mitochondria (Trx h2) and a Trx in plastids earlier described as a cytosolic form in tomato. Analysis of Trx h9 revealed a 17-amino acid N-terminal extension in which the second Gly (Gly(2)) and fourth cysteine (Cys(4)) were highly conserved. Mutagenesis experiments demonstrated that Gly(2) was required for membrane binding, possibly via myristoylation. Both Gly(2) and Cys(4) were needed for movement, the latter seemingly for protein structure and palmitoylation. A three-dimensional model was consistent with these predictions as well as with earlier evidence showing that a poplar ortholog is reduced by a glutaredoxin rather than NADP-thioredoxin reductase. In demonstrating the membrane location and intercellular mobility of Trx h9, the present results extend the known boundaries of Trx and suggest a role in cell-to-cell communication.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Meng</LastName>
<ForeName>Ling</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wong</LastName>
<ForeName>Joshua H</ForeName>
<Initials>JH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Feldman</LastName>
<ForeName>Lewis J</ForeName>
<Initials>LJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lemaux</LastName>
<ForeName>Peggy G</ForeName>
<Initials>PG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Buchanan</LastName>
<ForeName>Bob B</ForeName>
<Initials>BB</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>02</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C548337">thioredoxin h9, Arabidopsis</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>52500-60-4</RegistryNumber>
<NameOfSubstance UI="D013879">Thioredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K848JZ4886</RegistryNumber>
<NameOfSubstance UI="D003545">Cysteine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>TE7660XO1C</RegistryNumber>
<NameOfSubstance UI="D005998">Glycine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002450" MajorTopicYN="Y">Cell Communication</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002462" MajorTopicYN="N">Cell Membrane</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003545" MajorTopicYN="N">Cysteine</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005998" MajorTopicYN="N">Glycine</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018087" MajorTopicYN="N">Plastids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013879" MajorTopicYN="N">Thioredoxins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>2</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>2</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>4</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20133584</ArticleId>
<ArticleId IdType="pii">0913759107</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.0913759107</ArticleId>
<ArticleId IdType="pmc">PMC2840455</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2008 Aug 22;283(34):23062-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18552403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Aug 15;321(5891):952-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18635760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2002 Apr 5;317(4):523-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11955007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2003 Mar 27;539(1-3):143-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12650942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2003 Dec 18;555(3):443-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14675753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2004 May 19;23(10):2156-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15131698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2004;73:559-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15189153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Oct 5;101(40):14545-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15385674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2004 Oct 15;64(20):7455-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15492270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1988 Oct 25;16(20):9877</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3186459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 1989 Mar;92 ( Pt 3):345-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2592441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1991 May 15;287(1):195-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1897989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1992 Jun 8;304(1):15-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1377638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1995 Apr 14;268(5208):221-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7716512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1997 Oct;12(4):957-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9375406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1998 May;205(1):12-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9599802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Dec;16(6):735-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 1999 Jun;26(6):1125, 1128-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10376152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1999 Aug 12;1451(1):1-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10446384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2005 Jan;62(1):24-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15619004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2005;56:187-220</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15862094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W299-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15980475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Jul;17(7):1866-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15987996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Feb 10;281(6):3418-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16354655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Cancer Biol. 2006 Dec;16(6):427-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17081769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Feb;19(2):673-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17322408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Jun;19(6):1851-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17586656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2007 Oct;6(10):1711-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17586839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2008;9:40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18215316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2009 May;2(3):430-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19825627</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Buchanan, Bob B" sort="Buchanan, Bob B" uniqKey="Buchanan B" first="Bob B" last="Buchanan">Bob B. Buchanan</name>
<name sortKey="Feldman, Lewis J" sort="Feldman, Lewis J" uniqKey="Feldman L" first="Lewis J" last="Feldman">Lewis J. Feldman</name>
<name sortKey="Lemaux, Peggy G" sort="Lemaux, Peggy G" uniqKey="Lemaux P" first="Peggy G" last="Lemaux">Peggy G. Lemaux</name>
<name sortKey="Wong, Joshua H" sort="Wong, Joshua H" uniqKey="Wong J" first="Joshua H" last="Wong">Joshua H. Wong</name>
</noCountry>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Meng, Ling" sort="Meng, Ling" uniqKey="Meng L" first="Ling" last="Meng">Ling Meng</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A64 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000A64 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20133584
   |texte=   A membrane-associated thioredoxin required for plant growth moves from cell to cell, suggestive of a role in intercellular communication.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20133584" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020